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Motivation

o Data often reside on a low-dimensional subspace or
manifold in the feature space

— E.g., a 64*64 grey scale image of face has 4096

dimensions, but the intrinsic dimensionality might be just
at the order of 100

e Curse of dimensionality

— The amount of training data required for learning
increases exponentially with dimensionality

— If N points are needed to cover one dimension, then N¢
points would be needed to cover d dimensions. (Figure from https://www.embs.org/pulse/articles/what-is-the-

distance-between-objects-in-a-data-set/)

e Data compression
— Data = encoder > code - decoder - reconstructed data
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Linear Autoencoder

Let data x € RP, code z € R?, and p > q
Let encoder and decoder be linear transformations
Encoder

z=W,wpwx+b
Decoder

X=H,,z+d

= HWx+ Hb + d

Measure reconstruction error with L2 on dataset

N N
E(0) = z”x@ — 202 = z”x@ —HWx® —Hb —d |’
i=1 =1

Without loss of generality, we could set b = 0, to combine biases Hb and d
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Linear Autoencoder

e Then we have
N N
E@©) = ) [x® =3O = ) ||x® - Hwx® —d ||
i=1 =1

e Furthermore, d can be solved as

N
1 . .
d= NZ(x@ — HWxW) = (1 - HW)x
=1
l.e., the bias d compensates for the mean of data.

e Without loss of generality, we can assume data has zero-mean, i.e., x = 0
(zero vector)

— If data does not have zero-mean, we center data by subtracting the mean vector
x0 « xO — %, vi
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Formulation for Data with Zero Mean

e From now on, we assume data X has zero mean, then we have
N N

E©) = ) x® =20 = ) [|lx® - Hwx® |
=1 =1

T
X
e In matrix notation, we have data matrix Xy, =| :
LT
E0) = ||x - X|| IX — XWTHT||2

where 6 = {W s, H,x,}

o rank(XWTHT) < min{rank(X),rank(W),rank(H)} < q
e We try to find the best rank-g approximation X for X
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Singular Value Decomposition (SVD)

e According to the Eckart-Young-Mirsky theorem, the best rank-q

approximation X for X (zero-mean data matrix) in the sense of squared
Frobenius norm is obtained by truncating the SVD to keep the g largest

singular values

e SVD of X (assuming full rank)

X = UnxnZnxp Vg;Xp

where U and V are orthogonal matrices, and X is a diagonal matrix containing

singular values gy > 0, = - =20, > 0

e Let X, contain the first g singular values, the X =

e Correspondingly, let U = [U,,U,]and V = [V, V,]

X, 0
0 I,
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Solving Encoder and Decoder Matrices

The best rank-g approximation of X is
X — U121V{

Remember our linear autoencoder
X =XWTHT = UXVTWTHT

_ L, O1(Vi|yyryr
As V is orthogonal, we have
w=v!
H — V1

The process does not depend on g, so we can decide g after SVD!
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Principal Component Analysis (PCA)

e The above procedure is called PCA
— Center data matrix Xy,

- Perform SVD: X — UNxNszpVgxp
— Compute all principal components (code): Zyx, = XV
e For each data point: z = V'x

— Return transformation matrix: V7

e After learning the transformation matrix ¥V, we can apply it to new data x' to
compute its latent code z’' = V' x’
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A New Representation

e The principal components (code), z, is a new representation of input data x
z=VT'x

e This is a linear transformation of input data through v*

e Columns of V, called principal axes, form a new orthogonal basis of the
feature space RP

— Columns of V are orthogonal to each other

— Columns of V are ordered by their corresponding singular values from high to low

— Each dimension of z is the projection of x onto the corresponding basis vector

— Let v, pxq be the first g columns of V., then z; = V] x projects x to a subspace R?

— This is the best projection in the sense that the reconstruction (decoding)
/x\ - V121
is the closest to input data x measured by L2 distance considering all training data
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Covariance Eigenvalue Decomposition

e Look at the sample covariance matrix of training data matrix X (zero mean)

1
Cov(X) =——X'X

N-—1
1 1 1
=———UuxvHrwzsy™h) =—vlvTuzy =v|—3xTx | VT
N1 BV UV =y N—1
= VAVT
2 2 2
where A = diag( 12 ... ap)
N—1’N-1 N—1

e This is the eigenvalue decomposition of Cov(X)
e A are the eigenvalues, ordered from high to low
e Columns of V are the corresponding eigenvectors
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Variance Preserving

Look at the sample covariance matrix of the principal components (codes) of
training data, Z

1 T
COU(Z) = mz YA

1 1 1
=——(XV)TXV) =—V'X"XV = V" | ——XTX |V
o1&V @ =y (N—l )

=VTCov(X)V = VIVAVTV = A

This shows that different dimensions in the new representation, i.e., principal
components of training data, are statistically uncorrelated from each other

These dimensions are ordered by their variance from high to low

The first g dimensions transformed by PCA preserve the largest data variance
among all g-dimensional subspaces
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PCA lllustration — 2D

e Principal axes: red and green arrows
e Principal components: projections of data points onto principal axes
e Data variances along principal axes: shown as lengths of arrows in the right figure

X X1 X1
(Fig. 10.11 in LWLS)
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PCA lllustration — 3D
e Note: here PC actually refers to principal axis in our terminology

Principal Components Analysis

PC,
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(Figure from https://medium.com/@kavita.lolayekar/the-why-behind-pca-principal-component-analysis-2f7b3fe7b7fd)
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PCA on Face Images

(Figures from http://staff.ustc.edu.cn/~zwp/teach/MVA/pcaface.pdf)

Perform PCA on a training set of grey-scale face images

The first ten principal axes (i.e., the first ten eigenvectors of data covariance matrix), called eigenfaces
1-th 2-th 3-th 4-th 5-th 6-th 7-th 8-th 9-th 10-th

Reconstructed training images

Reconstructed unseen images

t11 r111 t12
test reconstructed
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Nonlinear Autoencoders

e PCA can be viewed as a linear
autoencoder

e How about using a nonlinear encoder and
a nonlinear decoder?

— A feedforward network that tries to predict the
input
z=f(x),x=g(2)
— Reconstruction loss, e.g., mean squared error

N
Lyecon = %z Hx(i) -4 (f(x(l)))Hi
i=1

— Training with backpropagation

Hidden layer

Input layer “hottleneck” Output layer

Encoder Decoder
(Fig. 10.10 in LWLS)
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Layer Size and Depth

e QOvercomplete autoencoders
— Hidden layer size > input size Hidden layer

i i i : Input layer » Output layer
— Easily to learn identity map even without P bottleneck P
nonlinearity, i.e., overfitting training data

— Needs some kind of regularization

e Undercomplete autoencoders
— Hidden layer size < input size

— May still learn identity map, if the nonlinearity is way
too rich

— Benefits of using more than one hidden layer

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024 16



Regularizing Hidden Layer

e Regularizing hidden layer is one way to prevent from learning identity map
— Sparsity regularization: forces the network to respond to unique statistical features in data

— Called sparse autoencoders
e Can be implemented by changing the loss to

N
Lyecon +2 ) [|20]],
i=1

e Can also be implemented using ReLU activation

— Penalizing derivatives: forces the encoder to not change much when input does not

— Called contractive autoencoders
e Can be implemented by changing the loss to
N
N 112
Lyecon +4 ”Vx(i)z(l) ”F
i=1
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Denoising Autoencoders

e Another way to prevent from learning identity map is to randomly corrupt the input data into
x' = c(x) before feeding to the network, but still try to reconstruct the clean data x:

A

Measure
Add noise to the} reconstruction
input image loss against
. T original image

v

Feed
corrupted
input into

autoencoder

7,
>

W o WY
N

V2 ~

(figure from https://www.v7labs.com/blog/autoencoders-guide#:~:text=An%20autoencoder%?20is%20an%_20unsupervised,even%20generation%200f%20image%20data)
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Score Matching

e Score: gradient field of log probability of data V, log p(x)

e Denoising autoencoders learn a vector field g(f (%)) — x, which is an
estimate of the score around data manifold

(Fig. 14.4 in GBK) f
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Multidimensional Scaling (MDS)

e Sometimes we only have pairwise distances or similarities between data

points, and we want to embed these data points into a low-dimensional

Euclidean space

Atl Chi Den |Hou |[LA Mia [NYC |SF Sea |DC
Atlanta 0
Chicago | 587 0
Denver 1212 920 0
Houston 701| 940| 879 0
LA 1936 1745| 831 1374 0
Miami 604| 1188 1726] 968| 2339 0
NYC 748| 713| 1631| 1420| 2451| 1092 0
SF 2139| 1858| 949| 1645| 347| 2594| 2571 0
Seattle 2182| 1737| 1021] 1891 959| 2734| 2406| 678 0
DC 543| 597| 1494| 1220 2300] 923] 205| 2442| 2329
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Nonlinear Dimensionality Reduction

e Data points often lie on a nonlinear manifold,

which cannot be captured by a linear
dimensionality reduction method like PCA
— What principal axes will PCA compute for the Swiss roll?

e Autoencoders use nonlinear activation functions
to achieve nonlinear dimensionality reduction
— With the objective of data reconstruction

(Figure from https://www.embs.org/pulse/articles/what-is-the-
distance-between-objects-in-a-data-set/)

e (Other ideas?
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Isometric Feature Mapping (Isomap)

o Key idea: find a Euclidean embedding that preserves the pairwise geodesic
distances
— Step 1: construct neighborhood graph, e-neighborhood or K-nearest-neighborhood
— Step 2: compute shortest paths, between all pairs of data points
— Step 3: construct d-dimensional embedding, through multidimensional scaling (MDS)

c -

(Fig. 3 in [Tenenbaum et al., Science, 2000])
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Up-down pose

Isomap Examples
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i . 4 : Images along straight lines in the embedding space connecting end images
E : . r-! ‘ (Fig. 4A in [Tenenbaum et al., Science, 2000])
I Lighting direction Left-right pose

3D embedding learned by Isomap from 64*64 face images with different poses and
lighting directions. (Fig. 1A in [Tenenbaum et al., Science, 2000])
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Isomap Examples

Bottom loop articulation

Top arch articulation
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Images along straight lines in the embedding space connecting end images
(Fig. 4C in [Tenenbaum et al., Science, 2000])
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2D embedding learned by Isomap from MNIST images of "2"s
(Fig. 1B in [Tenenbaum et al., Science, 2000])
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Locally Linear Embedding (LLE)

o Key idea: learn a Euclidean embedding that preserves locally
linear relations among data points

(Fig. 1 in [Roweis & Saul, Science, 2000])
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LLE Algorithm

e Step 1: construct neighborhood graph (e.q.,

K-nearest-neighborhood)

e Step 2: compute linear weights I¥;; that best

linearly reconstruct a point X; from its
neighbors, i.e., minimizing

e(W)=>

i

5
F

;"},—Z i ”’I]_] /“? j

e Step 3: Compute the low-dimensional

embedding vectors Y; best reconstructed by

W;j, i.e., minimizing

DY) = 2

1

5
£

O -
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Map to embedded coordinates

(Fig. 2 in [Roweis & Saul, Science, 2000])
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LLE Examples
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(Fig. 3 in [Roweis & Saul, Science, 2000])
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Summary

Why dimensionality reduction?
— Intrinsic dimension << feature dimension
— Curse of dimensionality
— Data compression

PCA: linear, minimizes reconstruction error, preserves large data variances
— SVD of zero-mean data matrix

MDS: linear, preserves pairwise distances
Autoencoder: nonlinear, minimizes reconstruction error
Isomap: nonlinear, preserves geodesic distances

LLE: nonlinear, preserves local linear relations

More advanced methods, commonly used for data visualization
— t-SNE [van der Maaten & Hinton, 2008]
— UMAP [McInnes & Healy, 2018]
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