Dimensionality Reduction PCA, Autoencoders, & Other Nonlinear Methods

Zhiyao Duan Associate Professor of ECE and CS University of Rochester

Some figures are copied from the following book

- **GBC** Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press.
- LWLS Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön, *Machine Learning: A First Course for Engineers and Scientists*, Cambridge University Press, 2022.

Motivation

- Data often reside on a low-dimensional subspace or manifold in the feature space
 - E.g., a 64*64 grey scale image of face has 4096 dimensions, but the intrinsic dimensionality might be just at the order of 100
- Curse of dimensionality
 - The amount of training data required for learning increases exponentially with dimensionality
 - If N points are needed to cover one dimension, then N^d points would be needed to cover d dimensions.
- Data compression
 - − Data \rightarrow encoder \rightarrow code \rightarrow decoder \rightarrow reconstructed data

(Figure from https://www.embs.org/pulse/articles/what-is-the-distance-between-objects-in-a-data-set/)

Linear Autoencoder

- Let data $x \in \mathbb{R}^p$, code $z \in \mathbb{R}^q$, and p > q
- Let encoder and decoder be linear transformations
- Encoder

$$\boldsymbol{z} = \boldsymbol{W}_{q \times p} \boldsymbol{x} + \boldsymbol{b}$$

• Decoder

$$\widehat{x} = H_{p \times q} z + d$$
$$= HWx + Hb + d$$

• Measure reconstruction error with L2 on dataset

$$E(\boldsymbol{\theta}) = \sum_{i=1}^{N} \|\boldsymbol{x}^{(i)} - \hat{\boldsymbol{x}}^{(i)}\|_{2}^{2} = \sum_{i=1}^{N} \|\boldsymbol{x}^{(i)} - \boldsymbol{H}\boldsymbol{W}\boldsymbol{x}^{(i)} - \boldsymbol{H}\boldsymbol{b} - \boldsymbol{d}\|_{2}^{2}$$

• Without loss of generality, we could set b = 0, to combine biases Hb and d

Linear Autoencoder

• Then we have

$$E(\boldsymbol{\theta}) = \sum_{i=1}^{N} \|\boldsymbol{x}^{(i)} - \hat{\boldsymbol{x}}^{(i)}\|_{2}^{2} = \sum_{i=1}^{N} \|\boldsymbol{x}^{(i)} - \boldsymbol{H}\boldsymbol{W}\boldsymbol{x}^{(i)} - \boldsymbol{d}\|_{2}^{2}$$

• Furthermore, *d* can be solved as

$$\boldsymbol{d} = \frac{1}{N} \sum_{i=1}^{N} \left(\boldsymbol{x}^{(i)} - \boldsymbol{H} \boldsymbol{W} \boldsymbol{x}^{(i)} \right) = (\boldsymbol{I} - \boldsymbol{H} \boldsymbol{W}) \overline{\boldsymbol{x}}$$

i.e., the bias *d* compensates for the mean of data.

- Without loss of generality, we can assume data has zero-mean, i.e., x
 = 0
 (zero vector)
 - If data does not have zero-mean, we center data by subtracting the mean vector

$$\boldsymbol{x}^{(i)} \leftarrow \boldsymbol{x}^{(i)} - \overline{\boldsymbol{x}}$$
, $\forall i$

Formulation for Data with Zero Mean

• From now on, we assume data X has zero mean, then we have

$$E(\boldsymbol{\theta}) = \sum_{i=1}^{N} \|\boldsymbol{x}^{(i)} - \hat{\boldsymbol{x}}^{(i)}\|_{2}^{2} = \sum_{i=1}^{N} \|\boldsymbol{x}^{(i)} - \boldsymbol{H}\boldsymbol{W}\boldsymbol{x}^{(i)}\|_{2}^{2}$$

• In matrix notation, we have data matrix $X_{N \times p} = \begin{bmatrix} x^{(1)^T} \\ \vdots \\ x^{(1)^T} \end{bmatrix}$

$$E(\boldsymbol{\theta}) = \left\| \boldsymbol{X} - \widehat{\boldsymbol{X}} \right\|_{F}^{2} = \left\| \boldsymbol{X} - \boldsymbol{X} \boldsymbol{W}^{T} \boldsymbol{H}^{T} \right\|_{F}^{2}$$

where $\boldsymbol{\theta} = \{ \boldsymbol{W}_{q \times p}, \boldsymbol{H}_{p \times q} \}$

- $rank(\mathbf{X}\mathbf{W}^{T}\mathbf{H}^{T}) \leq \min\{rank(\mathbf{X}), rank(\mathbf{W}), rank(\mathbf{H})\} \leq q$
- We try to find the best rank-q approximation \widehat{X} for X

Singular Value Decomposition (SVD)

- According to the Eckart-Young-Mirsky theorem, the best rank-q approximation \hat{X} for X (zero-mean data matrix) in the sense of squared Frobenius norm is obtained by truncating the SVD to keep the q largest singular values
- SVD of X (assuming full rank)

$$\boldsymbol{X} = \boldsymbol{U}_{N \times N} \boldsymbol{\Sigma}_{N \times p} \boldsymbol{V}_{p \times p}^{T}$$

where U and V are orthogonal matrices, and Σ is a diagonal matrix containing singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p > 0$

- Let Σ_1 contain the first q singular values, the $\Sigma = \begin{bmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \Sigma_2 \end{bmatrix}$ $\Sigma = \begin{pmatrix} \sigma_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \sigma_2 & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \sigma_p \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \end{pmatrix}$ Correspondingly, let $U = [U_1, U_2]$ and $V = [V_1, V_2]$

Solving Encoder and Decoder Matrices

- The best rank-q approximation of X is $\widehat{X} = U_1 \Sigma_1 V_1^T$
- Remember our linear autoencoder

$$\widehat{\boldsymbol{X}} = \boldsymbol{X}\boldsymbol{W}^{T}\boldsymbol{H}^{T} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T}\boldsymbol{W}^{T}\boldsymbol{H}^{T}$$
$$= [\boldsymbol{U}_{1}, \boldsymbol{U}_{2}] \begin{bmatrix} \boldsymbol{\Sigma}_{1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma}_{2} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{1}^{T} \\ \boldsymbol{V}_{2}^{T} \end{bmatrix} \boldsymbol{W}^{T}\boldsymbol{H}^{T}$$

• As *V* is orthogonal, we have

$$W = V_1^T$$
$$H = V_1$$

• The process does not depend on q, so we can decide q after SVD!

Principal Component Analysis (PCA)

- The above procedure is called PCA
 - Center data matrix $X_{N \times p}$
 - Perform SVD: $X = U_{N \times N} \Sigma_{N \times p} V_{p \times p}^{T}$
 - Compute all principal components (code): $Z_{N \times p} = XV$
 - For each data point: $z = V^T x$
 - Return transformation matrix: V^T
- After learning the transformation matrix V, we can apply it to new data x' to compute its latent code $z' = V^T x'$

A New Representation

- The principal components (code), z, is a new representation of input data x $z = V^T x$
- This is a linear transformation of input data through V^T
- Columns of V, called principal axes, form a new orthogonal basis of the feature space \mathbb{R}^p
 - Columns of *V* are orthogonal to each other
 - Columns of *V* are ordered by their corresponding singular values from high to low
 - Each dimension of *z* is the projection of *x* onto the corresponding basis vector
 - Let $V_{1_{p \times q}}$ be the first q columns of $V_{p \times p}$, then $z_1 = V_1^T x$ projects x to a subspace \mathbb{R}^q
 - This is the best projection in the sense that the reconstruction (decoding)

$$\widehat{\boldsymbol{x}} = \boldsymbol{V}_1 \boldsymbol{z}_1$$

is the closest to input data x measured by L2 distance considering all training data

Covariance Eigenvalue Decomposition

• Look at the sample covariance matrix of training data matrix X (zero mean)

$$Cov(\mathbf{X}) = \frac{1}{N-1} \mathbf{X}^T \mathbf{X}$$
$$= \frac{1}{N-1} (\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T)^T (\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T) = \frac{1}{N-1} \mathbf{V} \boldsymbol{\Sigma}^T \mathbf{U}^T \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T = \mathbf{V} \left(\frac{1}{N-1} \boldsymbol{\Sigma}^T \boldsymbol{\Sigma} \right) \mathbf{V}^T$$
$$= \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^T$$

where
$$\Lambda = \text{diag}\left(\frac{\sigma_1^2}{N-1}, \frac{\sigma_2^2}{N-1}, \cdots, \frac{\sigma_p^2}{N-1}\right)$$

- This is the eigenvalue decomposition of Cov(X)
- Λ are the eigenvalues, ordered from high to low
- Columns of *V* are the corresponding eigenvectors

Variance Preserving

• Look at the sample covariance matrix of the principal components (codes) of training data, Z

$$Cov(\mathbf{Z}) = \frac{1}{N-1} \mathbf{Z}^T \mathbf{Z}$$
$$= \frac{1}{N-1} (\mathbf{X}\mathbf{V})^T (\mathbf{X}\mathbf{V}) = \frac{1}{N-1} \mathbf{V}^T \mathbf{X}^T \mathbf{X} \mathbf{V} = \mathbf{V}^T \left(\frac{1}{N-1} \mathbf{X}^T \mathbf{X}\right) \mathbf{V}$$
$$= \mathbf{V}^T Cov(\mathbf{X}) \mathbf{V} = \mathbf{V}^T \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T \mathbf{V} = \mathbf{\Lambda}$$

- This shows that different dimensions in the new representation, i.e., principal components of training data, are statistically uncorrelated from each other
- These dimensions are ordered by their variance from high to low
- The first *q* dimensions transformed by PCA preserve the largest data variance among all *q*-dimensional subspaces

PCA Illustration – 2D

- Principal axes: red and green arrows
- Principal components: projections of data points onto principal axes
- Data variances along principal axes: shown as lengths of arrows in the right figure

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024

PCA Illustration – 3D

• Note: here PC actually refers to principal axis in our terminology

Principal Components Analysis

(Figure from https://medium.com/@kavita.lolayekar/the-why-behind-pca-principal-component-analysis-2f7b3fe7b7fd)

PCA on Face Images

Perform PCA on a training set of grey-scale face images ullet

(Figures from http://staff.ustc.edu.cn/~zwp/teach/MVA/pcaface.pdf)

9-th

The first ten principal axes (i.e., the first ten eigenvectors of data covariance matrix), called eigenfaces ullet

5-th

1-th

3-th

2-th

4-th

6-th

7-th

8-th

10-th

Reconstructed training images ullet

Reconstructed unseen images ۲

Nonlinear Autoencoders

- PCA can be viewed as a linear autoencoder
- How about using a nonlinear encoder and a nonlinear decoder?
 - A feedforward network that tries to predict the input

$$\mathbf{z} = f(\mathbf{x}), \, \hat{\mathbf{x}} = g(\mathbf{z})$$

- Reconstruction loss, e.g., mean squared error

$$L_{recon} = \frac{1}{N} \sum_{i=1}^{N} \left\| \boldsymbol{x}^{(i)} - g\left(f(\boldsymbol{x}^{(i)}) \right) \right\|_{2}^{2}$$

– Training with backpropagation

Layer Size and Depth

- Overcomplete autoencoders
 - Hidden layer size > input size
 - Easily to learn identity map even without nonlinearity, i.e., overfitting training data
 - Needs some kind of regularization
- Undercomplete autoencoders
 - Hidden layer size < input size
 - May still learn identity map, if the nonlinearity is way too rich
 - Benefits of using more than one hidden layer

Regularizing Hidden Layer

- Regularizing hidden layer is one way to prevent from learning identity map
 - Sparsity regularization: forces the network to respond to unique statistical features in data
 - Called sparse autoencoders
 - Can be implemented by changing the loss to

$$L_{recon} + \lambda \sum_{i=1}^{N} \left\| \mathbf{z}^{(i)} \right\|_{1}$$

- Can also be implemented using ReLU activation
- Penalizing derivatives: forces the encoder to not change much when input does not
- Called contractive autoencoders
 - Can be implemented by changing the loss to

$$L_{recon} + \lambda \sum_{i=1}^{N} \left\| \boldsymbol{\nabla}_{\boldsymbol{x}^{(i)}} \boldsymbol{z}^{(i)} \right\|_{F}^{2}$$

Denoising Autoencoders

 Another way to prevent from learning identity map is to randomly corrupt the input data into x' = c(x) before feeding to the network, but still try to reconstruct the clean data x:

(figure from https://www.v7labs.com/blog/autoencoders-guide#:~:text=An%20autoencoder%20is%20an%20unsupervised,even%20generation%20of%20image%20data)

Score Matching

- Score: gradient field of log probability of data $\nabla_x \log p(x)$
- Denoising autoencoders learn a vector field $g(f(\tilde{x})) x$, which is an estimate of the score around data manifold

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024

Multidimensional Scaling (MDS)

 Sometimes we only have pairwise distances or similarities between data points, and we want to embed these data points into a low-dimensional Euclidean space

	Atl	Chi	Den	Hou	LA	Mia	NYC	SF	Sea	DC
Atlanta	0									
Chicago	587	0								
Denver	1212	920	0							
Houston	701	940	879	0						
LA	1936	1745	831	1374	0					
Miami	604	1188	1726	968	2339	0				
NYC	748	713	1631	1420	2451	1092	0			
SF	2139	1858	949	1645	347	2594	2571	0		
Seattle	2182	1737	1021	1891	959	2734	2406	678	0	
DC	543	597	1494	1220	2300	923	205	2442	2329	0

Nonlinear Dimensionality Reduction

- Data points often lie on a nonlinear manifold, which cannot be captured by a linear dimensionality reduction method like PCA
 - What principal axes will PCA compute for the Swiss roll?
- Autoencoders use nonlinear activation functions to achieve nonlinear dimensionality reduction
 - With the objective of data reconstruction
- Other ideas?

(Figure from <u>https://www.embs.org/pulse/articles/what-is-the-distance-between-objects-in-a-data-set/</u>)

Isometric Feature Mapping (Isomap)

- Key idea: find a Euclidean embedding that preserves the pairwise geodesic distances
 - Step 1: construct neighborhood graph, ϵ -neighborhood or K-nearest-neighborhood
 - Step 2: compute shortest paths, between all pairs of data points
 - Step 3: construct d-dimensional embedding, through multidimensional scaling (MDS)

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024

Isomap Examples

Α Up-down pose А Images along straight lines in the embedding space connecting end images (Fig. 4A in [Tenenbaum et al., *Science*, 2000]) Left-right pose Lighting direction

3D embedding learned by Isomap from 64*64 face images with different poses and lighting directions. (Fig. 1A in [Tenenbaum et al., *Science*, 2000])

Isomap Examples

Locally Linear Embedding (LLE)

• Key idea: learn a Euclidean embedding that preserves locally linear relations among data points

(Fig. 1 in [Roweis & Saul, Science, 2000])

LLE Algorithm

- Step 1: construct neighborhood graph (e.g., K-nearest-neighborhood)
- Step 2: compute linear weights *W*_{*ij*} that best linearly reconstruct a point *X*_{*i*} from its neighbors, i.e., minimizing

 $\varepsilon(W) = \sum_{i} \left| \vec{X}_{i} - \Sigma_{j} W_{ij} \vec{X}_{j} \right|^{2}$

• Step 3: Compute the low-dimensional embedding vectors *Y_i* best reconstructed by *W_{ij}*, i.e., minimizing

$$\Phi(Y) = \sum_{i} \left| \vec{Y}_{i} - \Sigma_{j} W_{ij} \vec{Y}_{j} \right|^{2}$$

LLE Examples

Summary

- Why dimensionality reduction?
 - Intrinsic dimension << feature dimension
 - Curse of dimensionality
 - Data compression
- PCA: linear, minimizes reconstruction error, preserves large data variances
 SVD of zero-mean data matrix
- MDS: linear, preserves pairwise distances
- Autoencoder: nonlinear, minimizes reconstruction error
- Isomap: nonlinear, preserves geodesic distances
- LLE: nonlinear, preserves local linear relations
- More advanced methods, commonly used for data visualization
 - t-SNE [van der Maaten & Hinton, 2008]
 - UMAP [McInnes & Healy, 2018]

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024