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Motivation

• Data often reside on a low-dimensional subspace or 
manifold in the feature space

– E.g., a 64*64 grey scale image of face has 4096 
dimensions, but the intrinsic dimensionality might be just 
at the order of 100

• Curse of dimensionality

– The amount of training data required for learning 
increases exponentially with dimensionality

– If 𝑁 points are needed to cover one dimension, then 𝑁𝑑

points would be needed to cover 𝑑 dimensions.

• Data compression

– Data → encoder → code → decoder → reconstructed data
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(Figure from https://www.embs.org/pulse/articles/what-is-the-
distance-between-objects-in-a-data-set/) 

https://www.embs.org/pulse/articles/what-is-the-distance-between-objects-in-a-data-set/
https://www.embs.org/pulse/articles/what-is-the-distance-between-objects-in-a-data-set/


Linear Autoencoder

• Let data 𝒙 ∈ ℝ𝑝, code 𝒛 ∈ ℝ𝑞, and 𝑝 > 𝑞

• Let encoder and decoder be linear transformations

• Encoder
𝒛 = 𝑾𝑞×𝑝𝒙 + 𝒃

• Decoder
ෝ𝒙 = 𝑯𝑝×𝑞𝒛 + 𝒅

= 𝑯𝑾𝒙+𝑯𝒃 + 𝒅

• Measure reconstruction error with L2 on dataset
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𝑁
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2

• Without loss of generality, we could set 𝒃 = 0, to combine biases 𝑯𝒃 and 𝒅
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Linear Autoencoder

• Then we have

𝐸 𝜽 =෍
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• Furthermore, 𝒅 can be solved as

𝒅 =
1

𝑁
෍

𝑖=1

𝑁

𝒙 𝑖 −𝑯𝑾𝒙 𝑖 = (𝑰 − 𝑯𝑾)ഥ𝒙

i.e., the bias 𝒅 compensates for the mean of data.

• Without loss of generality, we can assume data has zero-mean, i.e., ഥ𝒙 = 𝟎
(zero vector)

– If data does not have zero-mean, we center data by subtracting the mean vector

𝒙 𝑖 ← 𝒙 𝑖 − ഥ𝒙, ∀𝑖
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Formulation for Data with Zero Mean

• From now on, we assume data 𝑿 has zero mean, then we have

𝐸 𝜽 =෍

𝑖=1

𝑁

𝒙(𝑖) − ෝ𝒙 𝑖
2

2
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𝒙(𝑖) −𝑯𝑾𝒙 𝑖
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• In matrix notation, we have data matrix 𝑿𝑁×𝑝 =
𝒙 1 𝑇

⋮

𝒙 𝑁 𝑇

𝐸 𝜽 = 𝑿 − ෡𝑿
𝐹

2
= 𝑿− 𝑿𝑾𝑇𝑯𝑇

𝐹
2

where 𝜽 = 𝑾𝑞×𝑝, 𝑯𝑝×𝑞

• 𝑟𝑎𝑛𝑘 𝑿𝑾𝑇𝑯𝑇 ≤ min 𝑟𝑎𝑛𝑘 𝑿 , 𝑟𝑎𝑛𝑘 𝑾 , 𝑟𝑎𝑛𝑘 𝑯 ≤ 𝑞

• We try to find the best rank-𝑞 approximation ෡𝑿 for 𝑿
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Singular Value Decomposition (SVD)

• According to the Eckart-Young-Mirsky theorem, the best rank-𝑞
approximation ෡𝑿 for 𝑿 (zero-mean data matrix) in the sense of squared 
Frobenius norm is obtained by truncating the SVD to keep the 𝑞 largest 
singular values

• SVD of 𝑿 (assuming full rank)
𝑿 = 𝑼𝑁×𝑁𝚺𝑁×𝑝𝑽𝑝×𝑝

𝑇

where 𝑼 and 𝑽 are orthogonal matrices, and 𝚺 is a diagonal matrix containing 
singular values 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑝 > 0

• Let 𝚺1 contain the first 𝑞 singular values, the 𝚺 =
𝚺1 𝟎
𝟎 𝚺2

• Correspondingly, let 𝑼 = 𝑼1, 𝑼2 and 𝑽 = 𝑽1, 𝑽2
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Solving Encoder and Decoder Matrices

• The best rank-𝑞 approximation of 𝑿 is
෡𝑿 = 𝑼1𝚺1𝑽1

𝑇

• Remember our linear autoencoder
෡𝑿 = 𝑿𝑾𝑇𝑯𝑇 = 𝑼𝚺𝑽𝑇𝑾𝑇𝑯𝑇

= 𝑼1, 𝑼2
𝚺1 𝟎
𝟎 𝚺2

𝑽1
𝑇

𝑽2
𝑇 𝑾𝑇𝑯𝑇

• As 𝑽 is orthogonal, we have 
𝑾 = 𝑽1

𝑇

𝑯 = 𝑽1
• The process does not depend on 𝑞, so we can decide 𝑞 after SVD! 
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Principal Component Analysis (PCA)

• The above procedure is called PCA

– Center data matrix 𝑿𝑁×𝑝

– Perform SVD: 𝑿 = 𝑼𝑁×𝑁𝚺𝑁×𝑝𝑽𝑝×𝑝
𝑇

– Compute all principal components (code): 𝒁𝑁×𝑝 = 𝑿𝑽

• For each data point: 𝒛 = 𝑽𝑇𝒙

– Return transformation matrix: 𝑽𝑇

• After learning the transformation matrix 𝑽, we can apply it to new data 𝒙′ to 
compute its latent code 𝒛′ = 𝑽𝑇𝒙′
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A New Representation

• The principal components (code), 𝒛, is a new representation of input data 𝒙
𝒛 = 𝑽𝑇𝒙

• This is a linear transformation of input data through 𝑽𝑇

• Columns of 𝑽, called principal axes, form a new orthogonal basis of the 
feature space ℝ𝑝

– Columns of 𝑽 are orthogonal to each other

– Columns of 𝑽 are ordered by their corresponding singular values from high to low

– Each dimension of 𝒛 is the projection of 𝒙 onto the corresponding basis vector

– Let 𝑽1𝑝×𝑞 be the first 𝑞 columns of 𝑽𝑝×𝑝, then 𝒛1 = 𝑽1
𝑇𝒙 projects 𝒙 to a subspace ℝ𝑞

– This is the best projection in the sense that the reconstruction (decoding) 
ෝ𝒙 = 𝑽1𝒛1

is the closest to input data 𝒙 measured by L2 distance considering all training data
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Covariance Eigenvalue Decomposition

• Look at the sample covariance matrix of training data matrix 𝑿 (zero mean)

𝐶𝑜𝑣 𝑿 =
1

𝑁 − 1
𝑿𝑇𝑿

=
1

𝑁 − 1
𝑼𝜮𝑽𝑇 𝑇 𝑼𝜮𝑽𝑇 =

1

𝑁 − 1
𝑽𝚺𝑇𝑼𝑇𝑼𝚺𝑽𝑇 = 𝑽

1

𝑁 − 1
𝚺𝑇𝚺 𝑽𝑇

= 𝑽𝚲𝑽𝑇

where 𝚲 = diag
𝜎1
2

𝑁−1
,
𝜎2
2

𝑁−1
, ⋯ ,

𝜎𝑝
2

𝑁−1

• This is the eigenvalue decomposition of 𝐶𝑜𝑣 𝑿

• 𝚲 are the eigenvalues, ordered from high to low

• Columns of 𝑽 are the corresponding eigenvectors
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Variance Preserving

• Look at the sample covariance matrix of the principal components (codes) of 
training data, 𝒁

𝐶𝑜𝑣 𝒁 =
1

𝑁 − 1
𝒁𝑇𝒁

=
1

𝑁 − 1
𝑿𝑽 𝑇 𝑿𝑽 =

1

𝑁 − 1
𝑽𝑇𝑿𝑇𝑿𝑽 = 𝑽𝑇

1

𝑁 − 1
𝑿𝑇𝑿 𝑽

= 𝑽𝑇𝐶𝑜𝑣 𝑿 𝑽 = 𝑽𝑇𝑽𝚲𝑽𝑇𝑽 = 𝚲

• This shows that different dimensions in the new representation, i.e., principal 
components of training data, are statistically uncorrelated from each other

• These dimensions are ordered by their variance from high to low

• The first 𝑞 dimensions transformed by PCA preserve the largest data variance
among all 𝑞-dimensional subspaces
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PCA Illustration – 2D
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• Principal axes: red and green arrows

• Principal components: projections of data points onto principal axes

• Data variances along principal axes: shown as lengths of arrows in the right figure

(Fig. 10.11 in LWLS)



PCA Illustration – 3D

• Note: here PC actually refers to principal axis in our terminology
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(Figure from https://medium.com/@kavita.lolayekar/the-why-behind-pca-principal-component-analysis-2f7b3fe7b7fd) 

https://medium.com/@kavita.lolayekar/the-why-behind-pca-principal-component-analysis-2f7b3fe7b7fd


PCA on Face Images

• Perform PCA on a training set of grey-scale face images

• The first ten principal axes (i.e., the first ten eigenvectors of data covariance matrix), called eigenfaces

• Reconstructed training images

• Reconstructed unseen images
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(Figures from http://staff.ustc.edu.cn/~zwp/teach/MVA/pcaface.pdf) 

test reconstructed

http://staff.ustc.edu.cn/~zwp/teach/MVA/pcaface.pdf


Nonlinear Autoencoders

• PCA can be viewed as a linear 
autoencoder

• How about using a nonlinear encoder and 
a nonlinear decoder?

– A feedforward network that tries to predict the 
input

𝒛 = 𝑓 𝒙 , ෝ𝒙 = 𝑔(𝒛)

– Reconstruction loss, e.g., mean squared error

𝐿𝑟𝑒𝑐𝑜𝑛 =
1

𝑁
෍

𝑖=1

𝑁

𝒙 𝑖 − 𝑔 𝑓 𝒙 𝑖

2

2

– Training with backpropagation
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(Fig. 10.10 in LWLS)



Layer Size and Depth

• Overcomplete autoencoders

– Hidden layer size > input size

– Easily to learn identity map even without 
nonlinearity, i.e., overfitting training data

– Needs some kind of regularization

• Undercomplete autoencoders

– Hidden layer size < input size

– May still learn identity map, if the nonlinearity is way 
too rich

– Benefits of using more than one hidden layer
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Regularizing Hidden Layer

• Regularizing hidden layer is one way to prevent from learning identity map

– Sparsity regularization: forces the network to respond to unique statistical features in data

– Called sparse autoencoders

• Can be implemented by changing the loss to

𝐿𝑟𝑒𝑐𝑜𝑛 + 𝜆෍

𝑖=1

𝑁

𝒛 𝑖
1

• Can also be implemented using ReLU activation

– Penalizing derivatives: forces the encoder to not change much when input does not

– Called contractive autoencoders

• Can be implemented by changing the loss to

𝐿𝑟𝑒𝑐𝑜𝑛 + 𝜆෍

𝑖=1

𝑁

𝛁𝒙 𝑖 𝒛 𝑖
𝐹

2
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Denoising Autoencoders

• Another way to prevent from learning identity map is to randomly corrupt the input data into 
𝒙′ = 𝑐 𝒙 before feeding to the network, but still try to reconstruct the clean data 𝒙:
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(figure from https://www.v7labs.com/blog/autoencoders-guide#:~:text=An%20autoencoder%20is%20an%20unsupervised,even%20generation%20of%20image%20data) 

https://www.v7labs.com/blog/autoencoders-guide#:~:text=An%20autoencoder%20is%20an%20unsupervised,even%20generation%20of%20image%20data


Score Matching

• Score: gradient field of log probability of data ∇𝒙 log 𝑝 𝒙

• Denoising autoencoders learn a vector field 𝑔 𝑓 ෥𝒙 − 𝒙, which is an 

estimate of the score around data manifold
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(Fig. 14.4 in GBK)



Multidimensional Scaling (MDS)

• Sometimes we only have pairwise distances or similarities between data 
points, and we want to embed these data points into a low-dimensional 
Euclidean space
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Nonlinear Dimensionality Reduction

• Data points often lie on a nonlinear manifold, 
which cannot be captured by a linear 
dimensionality reduction method like PCA

– What principal axes will PCA compute for the Swiss roll?

• Autoencoders use nonlinear activation functions 
to achieve nonlinear dimensionality reduction

– With the objective of data reconstruction

• Other ideas?
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(Figure from https://www.embs.org/pulse/articles/what-is-the-
distance-between-objects-in-a-data-set/) 

https://www.embs.org/pulse/articles/what-is-the-distance-between-objects-in-a-data-set/
https://www.embs.org/pulse/articles/what-is-the-distance-between-objects-in-a-data-set/


Isometric Feature Mapping (Isomap)

• Key idea: find a Euclidean embedding that preserves the pairwise geodesic 
distances

– Step 1: construct neighborhood graph, 𝜖-neighborhood or K-nearest-neighborhood

– Step 2: compute shortest paths, between all pairs of data points

– Step 3: construct d-dimensional embedding, through multidimensional scaling (MDS)
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(Fig. 3 in [Tenenbaum et al., Science, 2000])



Isomap Examples
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Images along straight lines in the embedding space connecting end images
(Fig. 4A in [Tenenbaum et al., Science, 2000])

3D embedding learned by Isomap from 64*64 face images with different poses and 
lighting directions. (Fig. 1A in [Tenenbaum et al., Science, 2000])



Isomap Examples
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2D embedding learned by Isomap from MNIST images of “2”s
(Fig. 1B in [Tenenbaum et al., Science, 2000])

Images along straight lines in the embedding space connecting end images
(Fig. 4C in [Tenenbaum et al., Science, 2000])



Locally Linear Embedding (LLE)

• Key idea: learn a Euclidean embedding that preserves locally 
linear relations among data points
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(Fig. 1 in [Roweis & Saul, Science, 2000])



LLE Algorithm

• Step 1: construct neighborhood graph (e.g., 
K-nearest-neighborhood)

• Step 2: compute linear weights 𝑊𝑖𝑗 that best 

linearly reconstruct a point 𝑋𝑖 from its 
neighbors, i.e., minimizing

• Step 3: Compute the low-dimensional 
embedding vectors 𝑌𝑖 best reconstructed by 
𝑊𝑖𝑗, i.e., minimizing
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(Fig. 2 in [Roweis & Saul, Science, 2000])



LLE Examples
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(Fig. 3 in [Roweis & Saul, Science, 2000])



Summary

• Why dimensionality reduction?

– Intrinsic dimension << feature dimension

– Curse of dimensionality

– Data compression

• PCA: linear, minimizes reconstruction error, preserves large data variances

– SVD of zero-mean data matrix

• MDS: linear, preserves pairwise distances

• Autoencoder: nonlinear, minimizes reconstruction error

• Isomap: nonlinear, preserves geodesic distances

• LLE: nonlinear, preserves local linear relations

• More advanced methods, commonly used for data visualization

– t-SNE [van der Maaten & Hinton, 2008]

– UMAP [McInnes & Healy, 2018]
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